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» Clustering
- Characteristic of Big Data

- References



flickr .o Google

~4.5 million photos
uploaded/day

Articles from over 10,000 sources
Y[]u Tube in real time

48 hours of video uploaded/min; more

Over 225 million users generating than 1 trillion video views

over 800 tweets per second

cuiceer

Over 50 billion pages indexed and more
than 2 million gqueries/min
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What is Clustering
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Is a method in which, data are divided into
groups in a way that objects in each group
share more similarity than with other objects

in other groups




Velocity
Real-tume capture and Real-time analytics

Volume Variety
Petabytes per day/week . " Unstructured data, web logs,
©  audio, video, image
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Velocity
Real-tume capture and Real-time analytics

Volume Variety
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Refers speed of processing data. Criteria:

- Complexity of algorithm
« The run time performances




Velocity
Real-time capture and Real-time analytics

Volume Variety
Petabytes per day/week . " Unstructured data, web logs,
R © / audig, video, image




- Refers to the ability to handle different
type of data. Criteria:
- Type of data
» Clusters shape
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Big Data Clustering

Algorithms

Patritioning

Density-based

e Parallel and Distributed
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Big Data Clustering

Algorithms




clustering algorithms according to different
categorization schemes



Patritioning
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« Partitioning algorithms use the distances between
the objects directly in order to optimize a global
cluster criterion

« Construct a flat (single level) partition of a
database D of n objects into a set of k clusters

* The k-means algorithm is best suited for large
data set because of its efficiency in clustering
large data sets

K-means Problem:

» Can’t determine the number of cluster

- Handle dataset with only numerical attributes

» Can't handle noise

» Its performance depends strongly on the initial
centroids and may get trapped in local optimal



PAM
(Partity ning Around Heduiicjl

* Bazad g L methads

* To Fing §y clistery, PAM'g APpraach
g hd-trrmin-a epresentatiye
=hiect (medpigz)

* Rebust g Rtz ang Sutlierg 5
Sempared ¢ k-means

" Quadratic time complevity

* Too costly for lerge valugs of 1




k-modes

* Introduce new dissimilarity measures to
deal with categorical objects

» The k-modes algorithm has made the
following extensions to the k-means
algorithm:

1. replacing means of clusters with

modes

2. using new dissimilarity measures to

deal with categorical objects

3. using a frequency based method to

update modes of clusters



k-medoid

« A medoid can be defined as the object of a

cluster whose average dissimilarity to all the

objects in the cluster is minimal

* Very robust to the existence of outliers

* Clusters found by it do not depend on the
order objects

 Invariant with respect to translations and
orthogonal transformations of data points

» Can handle very large data sets quite

efficiently



PAM
(Partitioning Around Medoids)

- Based on k-medoid methods
* To find k clusters, PAM’s approach
is to determine a representative

object (medoids)
* Robust to noise and outliers as

compared to k-means
* Quadratic time complexity
* Too costly for large values of n



CLARA
(Clustering for LARge
Applications)

PAM has a drawback that it works
inefficiently for a large data set due
to its time complexity

CLARA, applies the PAM to sampled
objects instead of all objects




CLARANS

« Using sampling technique to
reduce search space

» Proposed in order to improve
efficiency in comparison to
CLARA

» In each iteration, it checks only a

sample of the neighbors of the

current node in the grap
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Namg Size of Handling High | Handling Type of Clusters complexity of
Dataset | Dimensionality | Noisy Data DNataset Shape Algorithm
K-Means Large No No Numerical Hom- O(nkd)
convex
. Non-
K-modes Large Yes No Categorical 0(n)
convex
; . Non-
K-medoids Small Yes Yes Categorical O(nlk)
convex
. Non- .
PAM Small No No Numerical O(k(n-k)?)
convex
CLARA Large No No Numerical | O™ | o(k(40+k)2+k(n-K))
convex
. Non-
CLARANS Large No Nao Numerical 0(kn?)
convex
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Hierarchical

Hierarchical slgorithms decowmposs the data base imtn sevaral
levels of nested partitionings and iteratively splits © ints
arnaller subsets urtil cach sukact consizts of cnly one object, In
suck a hiwrarchy, sack node of the tree represents a cluster of
o




Hierarchical algorithms decompose the data base into several
levels of nested partitionings and iteratively splits D into
smaller subsets until each subset consists of only one object. In
such a hierarchy, each node of the tree represents a cluster of
D.



BIRCH

Properties of algorithm

+ Handles mixed types of attributes

« Automatically determine the best number of
clusters(A desirable feature in clustering is to
determine the number of clusters
utomatically)

« Identifies outlier or noise data records (95%)

* Linear scalability by increasing data set (We
test the scalability of our algorithm by
increasing number of data records and
number of attributes.)

+ Generates better quality clusters than the
traditional k-means algorithms
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Type of Dataset

Cluster

No. Technique Technique Used l!:'iu Quality Merits Demerits
It detects acourate number
Extension of 5 sic snd of cluster without human Its imitation is that
1 ACA-DTRS DTRS to find M’ World Very Hiel interference withom it
and FACADTRS number of clusters A Good losing function quality. cannot work for
automatically. Also speadup execution boundary region.
ine.
deulsmththn R —— ! Quernies can efficiently This algorithm is
size of tick dats Very mn. Clasters can be found proposad for tick
2 SOHAC iy : datasets by Low gicd iy .
which is growing Bl o Good in sigmificant running data
in size rapidly. ) fime. oaly.
Reduces scope of
search and Vast It can be applisd on
minimized data _ Very paralle] platform and
T | space by divide ERE— Good | MOUERIE | eed of spatial dam e
Darasets. R
and conquer for mining is increased.
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Model based
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todealwithlarge | Do C = l;:ﬂ".;;”i‘ml - Limited to only 3
+ SWIFT high dimensional A Good High . particular task for
a3 : Synthetic population mn large terinz
——— Datasets datasets -
modern dow ;
cytometry. .
It is offer a solution ltcanhandlenomeM'm Ir 1s well when
: and find a good clustering with a
to data base that is : : clusters are not
5 BIRCH ; Mulaple datasizes single scan of the dataset and ;
S, S G- 'e the quality with a few F -
meamory size. —— It is order sensitve

additional scans




Density-based

Clusters are regarded as regions in which the chjects are
demse, and which are separated by regions of low object
density




Density-based

Clusters are regarded as regions in which the objects are
dense, and which are separated by regions of low object
density

| Trpeal Exet Chast
Tachnips Technigue Dhatnset uting l.!lﬂﬂ:' Mlerits Thermerits
| Usedd Lims =Ry
Ilrn'.'scl\'u'h: ::: —
::: ofreal- DRTERTNRE COMect clnsiening €15
R s Rl and masber of chuter wita | hade
i (1| Syalene Ve e |[AREpamatlke ol
o il ™ ComcEpt Dimtasets o D .0 il st
= - o i
timse. Filter noise frome | dus beckmique
;flm_mn data am all
clusters ﬁh‘:’? H
Tt deals with
s5e
of chustening
bag
B is easy 1o pacallebae
#prkmm' Chuaster with varying
z Symthetc data o denmities are found Tt takoes rmch
2 | DBCUREMR ::j:‘ clusters | o hm. Hig sccunnely. I woe COELMEticn
e Feeal Life data rengiive e
Aoz o chastes wath wvaaymg
densities | <
il ilevwbes
parallelorad
with
| MagReduce
Clistering Trima k e Bt iz eanyr ta avplenest
AR . e 7 =
i i Exetabenrisic Machiine G mm;?:adl gu:llm.cf
3 | Cickao B Lesmeng ey | Moiterate | commpuaton Stz
Stady ':\.1:1(!4 ey | :I :J:fr;?ia{'\'r'- "311\ :JJE‘L;H
Optomrion: | cobleniof |0 | masthedt

i | b i i i | s bt bt b i i



Sr Tvpe of Exec Clust
~ - Technique Technique Dataset ution FastoRs Merits Demerits
No. : : Quality
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Parallel and Distributed

- DBDC
Density Based Distributed Clustering
+ Parallel k-means




Site n

locdminﬂ‘

k.

Site 1 Site 2
local data local data
local clustering local clustering
- .
determination of determination of
local representatives | | local representatives

determination of
local representatives

’\X_/

determination of global representatives

e A

local data
labeling

local data
labeling

local data
labeling

local
level

global

level

local
level



- DBDC
Density Based Distributed Clustering
 Parallel k-means



Open Issues

» Deploy clustering algorithms on GPU based MapReduce
frameworks to achieve better scalability and speed

* Improvement k-means



Conclusion
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