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Perforated-web steel sections have been used as structural members since the Second World War in an

attempt to enhance the flexural behavior without increasing the cost of the material. Nowadays, such

sections are widely used in a variety of geometries suitable for various loading conditions. In the current

study, the finite element method is used to investigate the major-axis buckling characteristics and

associated buckling capacity of axially loaded I-shaped steel columns. Extensive numerical analyses are

conducted to evaluate the reduction in buckling capacity of castellated columns due to shear and

flexural deformations. Obtained results are used to identify a dimensionless buckling modification

factor, Z, and the associated equivalent section properties that can be implemented to assess the critical

buckling load of the considered columns. The study considers a wide range of practical geometric

dimensions, as well as, various columns’ end conditions. A simplified procedure is suggested to evaluate

the buckling capacity of castellated columns. Charts are developed to enable practitioners to readily

estimate the buckling load of such a type of castellated columns more accurately.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

I-shaped steel members represent the basic structural element
in majority of structural steel building. Practical considerations
may require some of these members to have web openings to
allow for the passage and installation of piping, ductworks and/or
electrical conduits. Typical web openings that are commonly used
in exposed steel structures include hexagonal, octagonal and
cellular perforations. The current paper is devoted to studying the
influence of hexagonal web castellation on the overall buckling
characteristics of axially loaded steel columns as presented
in Fig. 1.

Luckily, hexagonal perforations are naturally introduced during
the manufacturing of castellated steel members, where the
member is cut in a zigzag pattern through its web. The resulting
two pieces are then reassembled together by welding as shown in
Figs. 2a and b, respectively. Although, the main intent of the
castellation process is to produce stiffer I-sections by increasing
the web height and providing higher major-axis moment capacity
than plain-webbed members of the same weight, it also provides
access to services and optimizes the use of the costly structural
steel material. These advantages, combined with the significant
development in computerized manufacturing equipments, have
led to the wide spread use of castellated steel members in various
structural applications.
ll rights reserved.

: +9713 7623154.

weedan).
The first attempt to quantify the reduction in the compressive
strength of axially loaded plain-webbed columns due to buckling
was carried out by Euler in 1774 [1]. He theoretically determined
the elastic buckling load Pe of a pin-ended column having a length
L and second moment of area I and is made of a linearly elastic
material with Young’s modulus E as

Pe ¼
p2EI

L2
(1)

The above equation considers only the flexural stiffness and
deformations of the column while the shear deformations are
ignored. Euler formula was then modified by Engesser [2,3] to
include the effect of shear deformations on the compressive
capacity of prismatic columns in accordance with the following
Engesser’s formula:

Pcr ¼
Pe

1þ ðnPe=AGÞ
(2)

where A is the area of the column’s cross-section, n is Poisson’s
ratio, G is the shear modulus of the column material (G ¼

E/[2(1+n)]) and n is a numerical factor depending on the shape of
the column’s cross-section. The accuracy of Engesser’s formula in
considering the shear effect on the elastic stability of plain-
webbed columns was verified by Nanni [4] and Ziegler [5]. The
influence of the shear deformations on reducing the buckling
capacity, especially for short columns, was highlighted by Ziegler
[5]. More investigations on the effect of shear deformations were
conducted by Gjelsvik [6] using Engesser’s formula. The study
concluded the appropriateness of Engesser’s formula for columns
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Fig. 1. A photo of castellated columns in structural skeletons (by permission of Westok Limited, UK).

Fig. 2. Manufacturing of steel members with hexagonal web-castellation. (a)

Typical cut of castellated member. (b) Reassembled castellated member.
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that can be modeled as continuous Timoshenko shear beams [7]
where plane sections are assumed to remain plane after
deformation, but do not remain normal to the displaced axis of
the column [8].

On the contrary to plain-webbed columns, shear deformations
have a more pronounced impact on the buckling capacity of built-
up columns [1]. The vital rule that shear plays in reducing the
buckling capacity of built-up columns was evident following the
catastrophic failure of the first Quebec Bridge in 1907 [9,10]. An
extensive literature survey has been conducted by Elmahdy [11]
on the effect of shear on the buckling capacity of built-up
columns. Reported investigations revealed that built-up columns
exhibit reduced shear stiffness resulting in an increase in lateral
deflection and consequently a reduction in the compressive load
carrying capacity. Timoshenko and Gere [1] derived approximate
formulae that account for the shear flexibility of built-up columns
with battened, laced or perforated cover plates as interconnectors.
To the best of the authors’ knowledge, no similar formula is
available to provide a reliable estimate of the critical buckling load
of castellated columns.

The previous review demonstrates the lack of information
related to the influence of shear deformations on the buckling
capacity of castellated columns. This may be attributed to the
limited production of such structural members in the past.
The current paper presents a comprehensive study to quantify
the effect of shear deformations on the compressive capacity of
castellated column when buckles about the cross-section major
axis. The equivalent slenderness ratio for the practical range of
geometric dimensions and boundary conditions of castellated
columns is assessed to help characterizing the compressive
response of such columns.
2. Design philosophy

Current international design codes adopt the equivalent
slenderness ratio approach to evaluate the critical buckling load
of built-up columns. The thirteenth edition of the 2005 AISC Steel
Construction Manual [12] provides the following formulae to
evaluate the modified column slenderness ratio (kL/r)m that
corresponds to the equivalent cross-section of built-up column
buckled about an axis perpendicular to the plane of the battens:
(a)
 For intermediate connectors that are snug-tight bolted

kL

r

� �
m

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kL

r

� �2

o

þ
a

ri

� �2
s

(3.a)
(b)
 For intermediate connectors that are welded or pretensioned
bolted

kL

r

� �
m

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kL

r

� �2

o

þ 0:82
a2

1þ a2

a

rib

� �2
s

(3.b)

where (kL/r)o is the column slenderness of the entire built-
up member acting as a unit in the buckling direction being
considered, a is the distance between battens, ri is the
minimum radius of gyration of individual component, rib is
the radius of gyration of individual component relative to its
centroidal axis parallel to the member axis of buckling, a is
the separation ratio a ¼ h/2rib and h is the distance between
centroids of individual components perpendicular to the
member axis of buckling. To avoid the interaction between
local buckling of each component over its free length between
battens and the global buckling of the column, the ratio (a/ri)

of each component should not exceed three-fourth times the
governing slenderness ratio of the built-up member.
Meanwhile, the code of practice for design rolled and welded
sections of the British Standard BS5950-1:2000 [13] requires the
equivalent slenderness ratio of welded or bolted battened columns
lb about the axis perpendicular to the plane of the battens to be
calculated in accordance with the following equation:

lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

m þ l2
c

q
X1:4lc (4)

where lc is the slenderness ratio of the component between end
welds or end bolts of adjacent battens based on its minimum
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radius of gyration and lm represents the slenderness ratio of the
entire member ¼ LE/r, in which, LE is the effective buckling length
of the entire column and r is radius of gyration of the entire
member parallel to the axis of buckling. The British Standard
BS5950-1:2000 [13] enforces the condition that the slenderness lc

should not exceed 50 to eliminate the possibility of having
interaction between local buckling of each component over its
free length between battens and the global buckling of the
column.

Nonetheless, no direct procedure is provided in current design
codes for evaluating the compressive load-carrying capacity of
columns with web perforations. The current study aims at
developing a reliable but simple procedure to identify the critical
buckling load for a wide range of practical dimensions of
castellated columns with various boundary conditions. This is
achieved in a similar manner to the current procedure recom-
mended by international design codes through the implementa-
tion of the equivalent slenderness ratio approach.
3. Development of the finite element model

Numerical modeling and analysis of castellated columns is
conducted using ANSYS [14], a general purpose finite element
software package, to determine the critical elastic buckling load
and the associated mode of failure of such castellated columns.
Three-dimensional (3D) 6-noded and 8-noded structural solid
elements (SOLID45), with three translational degrees of freedom
at each node, are used to model the geometrical details of
analyzed columns. Typical geometry of modeled castellated
columns is presented in Fig. 3. According to this illustration, the
typical spacing between castellation is 1.5d, center-to-center,
where d represents the diameter of the circle enclosing the
hexagonal perforation. The gain in the depth of the expanded
section, relative to the original depth, is estimated as 0.433d.
1.
5 

d

d

0.25 d

0.50 d

0.25 d

hw

tf
tf

tw

bf

L

0.75 d

Fig. 3. Geometry of a typical castellated column.
3.1. Modeling assumptions

The main assumptions employed in the conducted investiga-
tion are summarized below:
1.
 all columns are assumed to have a linear elastic material with a
modulus of Elasticity E ¼ 2�105 MPa and Poisson’s ratio
n ¼ 0.3;
2.
 the considered I-shaped column is defined by its length L,
flange width bf, flange thickness tf, web width hw and web
thickness tw, as shown in Fig. 3;
3.
 hexagonal web perforations are uniformly spaced at distance s

along the column axial direction (Fig. 3), the L/s ratio is
controlled to allow for the generation of integer number of
perforations along the column length;
4.
 the dominant failure mode is in-plane buckling of the column
accompanied by major-axis bending;
5.
 various end conditions are implemented to simulate different
boundary conditions;
6.
 the column is axially loaded with concentrated loads applied at
its ends and
7.
 the column buckling load is calculated following the small
deformation theory and is, therefore, obtained by solving an
Eigen-value problem.

3.2. Modeling assumptions

Flanges are modeled with two elements across the thickness
(tf) and 10 elements along the width (bf). Meanwhile, web plates
are modeled with three elements across the thickness (tw). The
number of elements used to model other parts of the column
cross-section are summarized in Table 1. For the range of
geometrical dimensions assumed in the current study, the limits
presented in Table 1 and Fig. 4a for the number of elements are
found to provide convergence of the buckling load based on
several trial buckling analyses that have been conducted using
higher and less number of elements.

As a result of the symmetry in the column geometry, loading
and response, only half of the column is modeled as shown in Fig.
4b. The mesh arrangement used for the finite element analysis is
shown in Fig. 4c. The buckling analysis accounts for the effect of
the boundary conditions on the column capacity by considering
four end conditions; pinned–pinned (P–P), fixed–pinned (F–P),
fixed–fixed (F–F) and fixed–free (F–Free). It should be mentioned
that to avoid any secondary stresses resulting from local
deformations at the column ends (especially close to the hole),
all the nodes at each of the column ends are rigidly constrained to
ensure that plane sections remain plane after deformation. The
appropriate end conditions, either for a pin or a fixation, are then
applied by imposing the appropriate restraints at the node located
at the centroid of the cross-section at the column end. To achieve
these idealized end conditions, dummy flexible shell elements
with rotational and translational nodal degrees of freedom are
added to the cross-sections at the column ends.

3.3. Validation of the developed model

The performance of the developed 3D finite element model is
validated by evaluating the critical buckling load of I-shaped
plain-webbed columns and comparing it to the compressive
capacity of Engesser’s analytical formula, Eq. (2), that accounts for
shear deformations in plain-webbed columns [2,3]. It should be
noted that the validation stage accounts also for various boundary
conditions other than the pinned–pinned case studied by
Engesser. The influence of the column boundary conditions on
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Table 1
Controlling parameters of finite element meshing.

Mesh parameter Description Minimum number of

elements

Maximum number of

elements

n1 Number of elements along the spacing between perforations (s) 8 20

n2 Number of elements along the web clear height (hw) 12 20

n3 Number of elements along each side of the hexagonal web perforation 4 –

n4 Number of elements in half the solid web post between perforations (s�d)/2 4 10

n5 Number of elements in the stem of the T-section located above and below each web

perforation (h/2�d/2�tf)

2 6

n1

n2

n3

n4

n5

Plane of

Symmetry

Supported
Node

Fig. 4. Sample finite element mesh and controlling parameters for analyzed castellated columns.

Table 2
Validation of the finite element model (kL/hw ¼ 30).

End

conditions

bf/tf If/Iw Pan (kN) PFE (kN) Relative error

|Pan�PFE/Pan|%

P–P 4 0.6 1866.6 1854.4 0.65

1.7 3836.9 3816.2 0.54

2.4 5239.6 5215.4 0.46

4.3 8926.2 8905.3 0.23

6.7 13830.6 13846.6 0.12

9.6 19975.8 20104.8 0.65

13.1 27350.3 27731.7 1.39

F–P 4 0.6 1866.6 1862.6 0.21

1.7 3836.9 3829.7 0.19

2.4 5239.6 5231.2 0.16

4.3 8926.2 8922.5 0.04

6.7 13830.6 13856.6 0.19

9.6 19975.8 20090.6 0.57

13.1 27350.3 27666.9 1.16

F–F 4 0.6 1901.2 1864.9 0.09

1.7 3797.6 3834.6 0.06

2.4 5113.5 5238.8 0.02

4.3 8483.0 8940.2 0.16

6.7 12826.3 13895.7 0.47

9.6 18114.8 20167.2 0.96

13.1 24302.1 27801.9 1.65

F–Free 4 0.6 1901.2 1854.3 0.66

1.7 3797.6 3816.8 0.52

2.4 5113.5 5216.9 0.43

4.3 8483.0 8909.8 0.18

6.7 12826.3 13856.6 0.19

9.6 18114.8 20122.7 0.74

13.1 24302.1 27759.8 1.50
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the buckling load is accounted for by considering various end
conditions including (P–P), (F–P), (F–F) and (F–Free) columns for
which k ¼ 1.0, 0.7, 0.5 and 2.0, respectively. The effective buckling
length factor (k) is incorporated in the load calculation which
yields the following expression of the analytical buckling load Pan

Pan ¼
Pe

1þ ðnPe=AGÞ
¼

EI

ðkL=pÞ2 þ ðnEI=AGÞ
(5)

in which nEA/Aw, where A is the area of the cross-section and Aw

is the area of the web Aw ¼ hwtw. The validation process considers
about 100 different columns that are modeled using the devel-
oped finite element model to assess the buckling load PFE that is
compared to its analytical counterpart Pan. A sample of obtained
results is presented in Table 2 for columns having hw/tw ¼ 45,
kL/hw ¼ 30 and bf/tf ¼ 4 and 25, respectively. Quantitative
comparison between the two sets of results shows an absolute
maximum relative error of about 1.65% for the case of a
fixed–fixed column with If/Iw ¼ 13.1 and bf/tf ¼ 4, where If and Iw

are the second moment of area of the flange and web relative to
the column centroidal axis perpendicular to the plane of buckling,
respectively, and are defined as

If ¼
bf t3

f

12
þ ðbf tf Þ

hw þ tf

2

� �2

(6.a)

Iw ¼
twh3

w

12
(6.b)

Meanwhile, the absolute minimum relative error is less than
0.02% which corresponds to the case of a fixed–free column
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Fig. 5. Buckling modes of castellated columns for various boundary conditions. (a) Pinned–pinned (P–P), (b) fixed–pinned (F–P), (c) fixed–fixed (F–F) and (d) fixed–free

(F–Free).
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having If/Iw ¼ 5.4 and bf/tf ¼ 4. The higher error values associated
with bigger If/Iw ratios are attributed to the higher order of the
error associated with the approximate (n) parameter in Engesser’s
formula. The close agreement shown between the analytical
solution and numerical results validates the accuracy of the
developed finite element model in predicting the critical buckling
load of axially loaded columns, including the effect of shear
deformations.
4. Numerical analysis of castellated columns

The validated 3D finite element model is utilized to perform an
extensive parametric analysis to identify the buckling character-
istics of castellated columns. A wide range of geometrical
properties of analyzed sections is selected to cover, and extend
beyond, the practical range of dimensions of such columns. An
extensive survey is conducted to identify the commonly used
dimensions in the European and North American markets. In
addition, the survey considers the recommendations of the
European Committee for Standardization [15,16]. Based on the
survey outcomes, sections with the relative flange-to-web flexural
stiffness (If/Iw) that ranges between around 0.60 and 17.0 and bf/tf-
ratio that varies from 4 to 25 are considered. The size of web
castellation relative to the web height (d/hw) is considered to vary
in the range 0.5–0.9.

It is crucial to carefully identify the appropriate length of
columns considered in the current study. This is attributed to the
fact that short columns may have a reduced buckling capacity,
relative to longer columns with the same cross-section dimen-
sions, as a result of the higher shear deformations induced in short
columns [5]. In addition, significant shortening of analyzed
columns may trigger unfavorable failure mode resulting from
the local buckling of the cross-section elements combined with
the overall buckling of the entire column. The coupled local–glo-
bal instabilities would result in a highly unstable post-buckling
behavior and, therefore, the buckling capacity of a column
experiencing interaction between local and global buckling is
significantly reduced [17]. The focus of the current study is to
explore the global buckling characteristics of castellated columns
and therefore, it is essential to eliminate any possibility of
interaction between local and global buckling modes. In the
employed finite element model, the symmetry boundary condi-
tions implemented require restraining the out-of-plane web
deformations and, therefore, local web buckling is prevented. As
this special case does not apply to the flange plates, flange local
buckling may be avoided by ensuring that overall column buckling
precedes local failure in its flange plates in accordance with the
following criterion:

f cr�overallof cr�fl (7)

in which, fcr�overall is the critical compressive stress associated
with elastic buckling of the entire column. Meanwhile, fcr�fl

represents the elastic buckling stress of the flange plates given by
[1]

f cr�fl ¼ c
p2E

12ð1� n2Þðbf =2tf Þ
2

(8)

where c is a constant that depends on the boundary conditions
and the length-to-width ratio of the flange plate. A value of
c ¼ 0.7 is considered to resemble the rigid-free boundary
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conditions of flange plate [13]. The elastic buckling stress of the
entire column is based on the Euler’s basic equation

f cr�overall ¼
p2E

ðkL=rÞ2
(9)

where (kL/r) represents the overall slenderness ratio of the
column in which, kL is the effective buckling length of the entire
column and r is the radius of gyration parallel to the axis of
buckling. Eqs. (7)–(9) are used to identify the overall slenderness
ratio (kL/r) at which the overall column buckling precedes the
flange local buckling. For over 200 plain-webbed columns
considered with various cross-sectional dimensions and end
conditions, analyses reveal that a critical value of (kL/rX50)
satisfies the condition presented in Eq. (7). This threshold value is
even magnified by a factor of 1.67 (which corresponds to
kL/hw ¼ 30) to ensure that overall buckling is the only dominant
buckling mode of analyzed columns. All reported finite element
analyses and their results are for kL/hw ¼ 30 unless otherwise
noted. A detailed general approach is presented in the next section
to explain extending the results associated with the particular
value of kL/hw ¼ 30 to correspond to any other (kL/hw) ratio.
Table 3
Variation of the buckling modification factor Z for castellated columns with

different cross-section dimensions and kL/hw ¼ 30.

If/Iw d/hw Web dimensions (mm) Flange dimensions (mm) hw/tw bf/tf Z

hw tw bf tf

0.6 0.5 100 5 20 5 20 4 1.023

400 20 80 20 1.023

200 10 100 4 25 1.024

400 20 200 8 1.024

15.0 0.5 200 10 200 50 20 4 1.081

800 40 800 200 1.081

100 5 250 10 25 1.093

200 10 500 20 1.093

0.6 0.6 100 5 20 5 20 4 1.034

400 20 80 20 1.034

200 10 100 4 25 1.035

400 20 200 8 1.035

15.0 0.6 200 10 200 50 20 4 1.088

800 40 800 200 1.088

100 5 250 10 25 1.102

200 10 500 20 1.102

0.6 0.7 100 5 20 5 20 4 1.050

400 20 80 20 1.050

200 10 100 4 25 1.053

400 20 200 8 1.053

15.0 0.7 200 10 200 50 20 4 1.094

800 40 800 200 1.094

100 5 250 10 25 1.115

200 10 500 20 1.115

0.6 0.8 100 5 20 5 20 4 1.075

400 20 80 20 1.075

200 10 100 4 25 1.079

400 20 200 8 1.079
5. Identification of buckling characteristics

As it was alluded to before, the basic objective of this paper is
to enable designers to assess the buckling capacity of castellated
columns in a similar manner to that adopted by current
international design codes. This requires determination of the
critical buckling load in terms of the equivalent slenderness ratio
which is a unique characteristic of each particular castellated
column depending on its geometrical parameters. The critical
buckling load can be evaluated in accordance with the following
equation:

Pcr ¼
p2EA

ðkL=rÞ2eq

(10)

where A is the gross area of the column cross-section without
considering the reduction in area due to web castellation (i.e.,
A ¼ 2bftf+hwtw), and (kL/r)eq stands for the equivalent slenderness
ratio of the castellated column that is to be used in Eq. (10) to
result in an accurate estimate of the critical buckling load Pcr. In
other words, the equivalent slenderness ratio is a design
parameter that reflects the influence of web castellation on the
buckling capacity through consideration of the change in flexural
and shear deformations of castellated columns from plain-
webbed columns. The equivalent slenderness ratio can be
expressed as a function of the traditional slenderness ratio
through the dimensionless buckling modification factor, Z, as

Z ¼
ðkL=rÞeq

ðkL=rÞ
(11)

The procedure followed to determine the buckling modification
factor Z involves the following steps:
15.0 0.8 200 10 200 50 20 4 1.099

800 40 800 200 1.099

1.
100 5 250 10 25 1.134
Identification of the critical load Pcr using the developed finite
element model.
200 10 500 20 1.134
2.
0.6 0.9 100 5 20 5 20 4 1.108
Eq. (10) is applied to calculate the corresponding equivalent
slenderness ratio (kL/r)eq.
400 20 80 20 1.108
3.

200 10 100 4 25 1.118

400 20 200 8 1.118

15.0 0.9 200 10 200 50 20 4 1.107

800 40 800 200 1.107

100 5 250 10 25 1.160

200 10 500 20 1.160
Finally, the buckling modification factor Z is obtained based on
Eq. (11).

Samples of the buckling modes resulting from the finite
element analysis are provided in Figs. 5a–d for castellated
columns with (P–P), (F–P), (F–F) and (F–Free) boundary
conditions, respectively.
A set of finite element analyses is conducted on various
castellated columns to investigate the influence of web dimen-
sions (hw, tw), flange dimensions (bf, tf), size of web castellation
relative to the web height (d/hw) and theoretical buckling length,
for various end conditions, relative to web height (kL/hw) on the
critical buckling load of castellated columns. Preliminary results
indicate that the finite element analyses of castellated columns
with similar controlling parameters kL/hw, If/Iw, d/hw, hw/tw and
bf/tf produce the same modification factor Z. This observation is
shown in the sample results summarized in Table 3 for various
columns with (kL/hw ¼ 30). In view of these results, it is clear that
equal modification factor Z can be applied for castellated columns
with equal If/Iw, d/hw, hw/tw and bf/tf values irrespective of the
specific dimensions of the web plate (hw, tw) and the flange plate
(bf, tf) of such columns. As a result, a significant reduction in the
amount of numerical results to be presented can be achieved since
no correlation exists between the modification factor and the
specific dimensions of cross-section elements. Variation of the
modification factor Z with various controlling parameters that
characterize the geometry of the column and the configuration of
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web castellation such as If/Iw, d/hw, hw/tw, bf/tf and kL/hw along
with the associated degree of dependency is discussed in details
in the following subsections.
5.1. Variation of the modification factor Z with web dimensions

(hw/tw)

Results of the parametric analysis reveal that for castellated
columns with equal (If/Iw), (d/hw) and (bf/tf) ratios, the aspect ratio
of the web plate (hw/tw) has insignificant effect on the buckling
modification factor Z. A sample of the results is presented in Table
4 for 16 different columns that represent extreme geometrical
parameters where d/hw-ratio equals 0.5 and 0.9 and bf/tf-ratio is 4
and 25. Half of the considered columns are assigned If/Iw-ratio of
0.6, while the other half corresponds to a higher If/Iw-ratio of 15.0.
Analyzed cases are sorted in Table 4 in such a way that for each
two consecutive rows, the mentioned controlling parameters If/Iw,
d/hw and bf/tf are equal, while the aspect ratio of the web plate
(hw/tw) is unequal with assumed extreme values of 5 and 45,
respectively. Tabulated results indicate that the value for the
buckling modification factor Z is almost identical for the two
extreme values of (hw/tw) with a maximum difference in the order
of 2.5%. This trend is thought to be related to the equal reduction
in the shear and flexural stiffness of the different cross-sections
with equal relative flexural stiffness (If/Iw) and castellation effect
(d/hw) with minor effect of (bf/tf).
5.2. Variation of the modification factor Z with flange dimensions

(bf/tf)

Finite element results show that the buckling modification
factor Z is linearly proportional to the increases in the bf/tf-ratio.
The obtained variation trend is shown in Figs. 6a–c for castellated
columns having d/hw ¼ 0.5, 0.7 and 0.9, respectively. As a result of
the observed linear trend, the buckling modification factor Z that
corresponds to any (bf/tf) ratio other than 4 and 25 can be easily
assessed by linearly interpolating between the two extreme
values provided in this study for (bf/tf) ¼ 4 and 25 as explained
in more details in the next subsection and Figs. 7 and 8.
Table 4
Variation of the buckling modification factor Z with web aspect ratio (hw/tw) for

(kL/hw ¼ 30).

If/Iw d/hw Web dimensions (mm) Flange dimensions (mm) hw/tw bf/tf Z

hw tw bf tf

0.6 0.5 50 10 20 5 5 4 1.023

450 10 60 15 45 1.023

0.6 0.5 50 10 50 2 5 25 1.023

450 10 150 6 45 1.024

15.0 0.5 50 10 100 25 5 4 1.084

450 10 300 75 45 1.082

15.0 0.5 50 10 250 10 5 25 1.117

450 10 750 30 45 1.088

0.6 0.9 50 10 20 5 5 4 1.098

450 10 60 15 45 1.111

0.6 0.9 50 10 50 2 5 25 1.113

450 10 150 6 45 1.119

15.0 0.9 50 10 100 25 5 4 1.109

450 10 300 75 45 1.112

15.0 0.9 50 10 250 10 5 25 1.162

450 10 750 30 45 1.166
5.3. Variation of the modification factor Z with relative flexural

stiffness (If/Iw)

Parametric analysis results indicate that relative flexural
stiffness (If/Iw) is a major factor to consider when evaluating the
buckling capacity of castellated columns due to the strong
correlation between such a factor and the buckling modification
factor Z. Figs. 7 and 8 present the variation of the buckling
modification factor Z with the dimensionless parameters (If/Iw)
and (d/hw) for (bf/tf) ¼ 4 and 25, respectively. Both graphs
correspond to a reference slenderness value of kL/hw ¼ 30 to
avoid interaction between overall and local instabilities as
previously explained in Section 4. Although graphs are
provided only for two particular values of (bf/tf) ¼ 4 and 25, the
buckling modification factor Z that corresponds to any (bf/tf) ratio,
other than 4 and 25, can be readily assessed by linearly
interpolating between the two values of Z provided in Figs. 7
and 8.

The general trend shown by the plots reveal also that more
reduction in the buckling capacity is associated with the increase
in the relative flexural stiffness (If/Iw) due to the associated
reduction in the shear stiffness of the web and consequently the
column. The plots show also that the optimum relative flexural
stiffness (If/Iw) that is the (If/Iw) value that corresponds to the least
reduction in the buckling capacity, is centered around a value of 2.
This value is, in fact, the typical average (If/Iw) value for commonly
used steel sections in practice. Both figures demonstrate also that
columns with bigger web castellation, i.e.; higher (d/hw) ratio,
experience more reduction in their buckling capacity, associated
with higher buckling modification factor Z, as a result of the
higher reduction in their shear stiffness. For columns with smaller
(d/hw) ratio, the buckling modification factor Z approaches unity
which is the typical value to be used for plain-webbed long
columns, where the shear deformations are minimal relative to
those induced in castellated columns.

5.4. Variation of the modification factor Z with column length

The buckling modification factors Z reported in the previous
subsection, Figs. 7 and 8, apply to castellated columns with a
reference kL/hw ¼ 30 to ensure their buckling capacity is con-
trolled by their overall instability only. To use these Z factors to
determine the reduced critical buckling load associated with an
arbitrary (kL/hw) ratio, it is essential to separate the effect of shear
deformations on the buckling capacity of castellated columns
from other parameters. Engesser’s formula (Eq. (2)) can be re-
written as

Pcr ¼
Pe

1þ ðnPe=AGÞ
or

n

AG
¼

1

Pcr
�

1

Pe

� �
(12)

It is important to notice that the term [nPe/AG] represents the
effect of shear deformations on the critical buckling load of the
castellated column. The term [n/AG] is solely dependent on the
cross-section geometry and dimensions, while Pe is the Euler
buckling load that is not a function of the shear effect, but rather is
dependent on the column’s length. In the current study, a
conservative assumption is adopted where columns with (kL/hw)
that exceeds 150 (i.e., kL/r4250) are considered long enough for
the influence of shear deformations to vanish. The Euler load Pe

can be defined as

Pe ¼
p2EIeq

ðkLÞ2
¼

p2EI

Z2ðkLÞ2
(13)

where Ieq is the equivalent second moment of area of the column’s
cross-section, which is a key parameter that needs to be
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Fig. 6. Variation of the buckling modification factor Z with (bf/tf) for different (d/hw) values. (a) Case of d/hw ¼ 0.5; (b) Case of d/hw ¼ 0.7; (c) Case of d/hw ¼ 0.9.
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evaluated. It is clear that Ieq depends primarily on the cross-
sectional properties and more specifically on the appropriate net
properties of the castellated web. The identification of the reduced
section due to castellation is a trial and error process that is
carried out to identify the appropriate equivalent cross-section to
be used in the calculation of Ieq. Several trials with very long
columns (i.e., kL/hw4150) are conducted and results from the
finite element are compared with Eq. (13). This process
indicates that considering a virtual web with a central part of
size (0.806d) removed has appropriately reduced the second
moment of area of the cross-section under the following two basic
conditions:
�

M
od

if
ic

at
io

n 
Fa

ct
or

 η
The critical buckling load, Pcr, evaluated based on Eq. (13)
should be equal to the buckling load, PFE, identified by ANSYS
[14]. This implies that the proposed procedure should predict
the same value that would result from a detailed 3D finite
element analysis of castellated columns.

�
 The dimensionless buckling modification factor Z should

approach a value of unity for columns that are significantly
long relative to the size of their cross-section [1,5], where the
column behaves like a long bar with no shear deformations
induced and, therefore, no reduction in the buckling load is
expected.

To derive an expression for the dimensionless buckling
modification factor Zi for any castellated column length Li,
Eq. (12) can be written for two column lengths; first for the
reference length L (corresponding to kL/hw ¼ 30) and secondly for
any arbitrary length Li.

n

AG
¼

1

Pcr
�

1

Pe

� �
¼

1

Pcr
�

1

Pe

� �
i

¼
Z2ðkLÞ2

p2EI
�
ðkLÞ2

p2EIeq
¼
Z2

i ðkLiÞ
2

p2EI
�
ðkLiÞ

2

p2EIeq
(14)

Eq. (14) can be simplified to give the following general
expression for the buckling modification factor Zi for a castellated
column with length Li

Zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

Ieq

� �
þ

L

Li

� �2

Z2 �
I

Ieq

� �s
; where Ieq ¼ I �

twð0:806dÞ3

12

(15)
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Fig. 9. Variation of the buckling factor Z with column length.
Fig. 9 presents sample results that show the variation of the
buckling modification factor Z with various (kL/hw) ratios for
columns having 450 mm�10 mm web and 400 mm�16 mm
flange. Five different web castellation sizes of d/hw ¼ 0.5, 0.6,
0.7, 0.8 and 0.9 are considered. Plotted results show the trend of
variation of the buckling modification factor Z with column length
as it approaches unity for long columns with significantly high
(kL/hw) ratio that exceeds 150.
6. Summary and conclusions

The current study presents a simplified approach for the
assessment of the effect of shear deformations on axially loaded
castellated columns and evaluation of the associated buckling
load capacity. The finite element method is employed to perform
an extensive numerical stability analysis of a wide spectrum of
geometric dimensions and boundary conditions of I-shaped
castellated steel columns. Results of the analysis are used to
identify a non-dimensional parameter that can be used to
calculate the buckling length of castellated columns taking into
account the influence of web castellation on altering the flexural
and shear deformations from those induced in plan-webbed
columns with the same geometrical dimensions. Results of the
numerical analysis are also used to investigate the variation of the
proposed buckling load modification factor with various para-
meters defining the geometry of the column’s cross-section and
the configuration of web castellation along the axis of the column.
The main conclusions that may be drawn from the study are
summarized as follows:
�
 Results indicate that columns with bigger castellation size,
(d/hw), are associated with higher values for the buckling
modification factor Z. As such, these columns experience
higher reduction in their buckling capacity due to the
encountered reduction in the shear stiffness. For columns with
smaller (d/hw) ratio, the buckling modification factor Z
approaches unity which is the typical value for plain-webbed
long columns, where the shear deformations are minimal.

�
 Numerical analyses reveal that web aspect ratio (hw/tw) has no

impact on the buckling modification factor Z. Meanwhile, the
buckling modification factor Z is found to be linearly propor-
tional to the increase in the flange aspect ratio (bf/tf).

�
 Charts are developed to present the variation of the proposed

buckling modification factor Z with respect to the relative
flange-to-web flexural stiffness (If/Iw) for a reference (kL/hw)
value of 30. Developed charts show more reduction in the
buckling capacity to be associated with the increase in the
relative flexural stiffness (If/Iw), for the same gross second
moment of area I, due to the associated reduction in the shear
stiffness of the web and consequently the entire column. The
plots show also that the minimum reduction in the buckling
capacity corresponds to an optimum (If/Iw) value of 2.0. Such
value represents the typical average (If/Iw) value for commonly
used steel sections in practice.

�
 The influence of the castellated column length on its buckling

capacity is also investigated. A general procedure is proposed
to allow for evaluation of the buckling modification factor Z for
any column length other than the reference (kL/hw) value of 30.
The procedure is based on the combined implementation of
the developed Z-charts that account for the shear effects, along
with the equivalent cross-section approach that considers the
reduced flexural stiffness of the equivalent cross-section. The
suggested equivalent cross-section properties are evaluated for
a virtual section having a uniform web perforation with a size
equal to 0.806 of the original castellation size.
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